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Antennas: Introductory Comments

Classification of antennas by size:

Let   l be the antenna dimension:

1. electrically small,   l << λ :  primarily used at low frequencies where the wavelength
is long

2. resonant antennas,   l ≈ λ / 2:  most efficient; examples are slots, dipoles, patches
3. electrically large,   l >> λ :  can be composed of many individual resonant

antennas; good for radar applications (high gain, narrow beam, low sidelobes)

Classification of antennas by type:

1. reflectors
2. lenses
3. arrays

Other designations: wire antennas, aperture antennas, broadband antennas
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Radiation Integrals (1)

Consider a perfect electric conductor (PEC) with an electric surface current flowing on S.
In the case where the conductor is part of an antenna (a dipole), the current may be caused
by an applied voltage, or by an incident field from another source (a reflector).  The
observation point is denoted by P and is given in terms of unprimed coordinate variables.
Quantities associated with source points are designated by primes.  We can use any
coordinate system that is convenient for the particular problem at hand.
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The medium is almost always free space ( oo εµ , ), but we continue to use ( εµ, ) to cover
more general problems.  If the currents are known, then the field due to the currents can be
determined by integration over the surface.
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Radiation Integrals (2)

The vector wave equation for the electric field can be obtained by taking the curl of
Maxwell’s first equation:
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Radiation Integrals (3)

In the expression for )(rA rr
 we use the approximation rR /1/1 ≈  in the denominator and
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 in the exponent.  Equation (2) becomes
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When this is inserted into equation (1), the del operations on the second term lead to 2/1 r
and 3/1 r  terms, which can be neglected in comparison to the Aj

r
ω−  term, which depends

only on r/1 .  Therefore, in the far field,
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    (discard the rE  component) (3)

Explicitly removing the r component gives,
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The radial component of current does not contribute to the field in the far zone.
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Radiation Integrals (4)

Notice that the fields have a spherical wave behavior in the far zone: 
r

e
E

jkr−
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r
.  The

spherical components of the field can be found by the appropriate dot products with E
r

.
More general forms of the radiation integrals that include magnetic surface currents ( msJ
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The radiation integrals apply to an unbounded medium.  For antenna problems
the following process is used:

1. find the current on the antenna surface, S,
2. remove the antenna materials and assume that the currents are suspended

in the unbounded medium, and
3. apply the radiation integrals.
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Hertzian Dipole (1)

Perhaps the simplest application of the radiation integral is the calculation of the fields of
an infinitesimally short dipole (also called a Hertzian dipole).  Note that the criterion for
short means much less than a wavelength, which is not necessarily physically short.
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Hertzian Dipole (2)

Using zzr ′=′ ˆ
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r .  The
radiation integral for the electric field becomes

( ){ ∫∫ ′−
=′−

≈ ′−−

′

•′
ll

r
rr

00

ˆ cos
4

ˆ
ˆ

4
),,( zde

r
zIjk

zdzIe
r

jk
rE zjkejkrejkr

ld

rrjk θ
π
η

π
η

φθ

However, because l  is very short, 0→′zk  and 1cos ≈
′ θzjke .  Therefore,

( ) jkrjkr e
r

zIjk
zde

r
zIjk

rE −− −
=′−

≈ ∫ π
η

π
η

φθ
4

ˆ
1

4
ˆ

),,(
0

lr l

leading to the spherical field components

0ˆ
4

sin
4

ˆˆ
ˆ

==

=

−
≈=

•

−

−•
•

EE

e
r

Ijk

e
r

zIjk
EE

jkr

jkr

r
l

lr

φ
π

θη
π

θη
θ

φ

θ

x y

z

l
z′

SHORT CURRENT
FILAMENT



8

Naval Postgraduate School        Antennas & Propagation                      Distance Learning

Hertzian Dipole (3)

Note that the electric field has only a 1/r dependence.  The absence of higher order terms
is due to the fact that the dipole is infinitesimal, and therefore 0→ffr .  The field is a
spherical wave and hence the TEM relationship can be used to find the magnetic field
intensity
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The power flow is outward from the source, as expected for a spherical wave.  The
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Solid Angles and Steradians

Plane angles: s = Rθ ,  if s = R then θ =1 radian

R

θ

ARC LENGTH

s

Solid angles: Ω = A / R2 , if A = R2, then Ω =1 steradian

SURFACE 
AREA

AR
Ω = A / R2
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Directivity and Gain (1)

The radiation intensity is defined as
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and has units of Watts/steradian (W/sr).  The directivity function or directive gain is
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Dipole Polar Radiation Plots

Half of the radiation pattern of the dipole is plotted below for a fixed value of φ .  The half-
power beamwidth (HPBW) is the angular width between the half power points (1/ 2
below the maximum on the voltage plot, or –3dB below the maximum on the decibel plot).
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Dipole Radiation Pattern

Radiation pattern of a Hertzian dipole aligned with the z axis.  Dn  is the normalized
directivity.  The directivity value is proportional to the distance from the center.



13

Naval Postgraduate School        Antennas & Propagation                      Distance Learning

Directivity and Gain (2)

Another formula for directive gain is

2
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 is the normalized magnitude of the electric field pattern (i.e., the
normalized radiation pattern)
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Note that both the numerator and denominator have the same 1/r dependence, and hence
the ratio is independent of r.  This approach is often more convenient because most of our
calculations will be conducted directly with the electric field.  Normalization removes all
of the cumbersome constants.
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Directivity and Gain (3)

As an illustration, we re-compute the directivity of a Hertzian dipole.  Noting that the
maximum magnitude of the electric field is occurs when 2/πθ = , the normalized electric
field intensity is simply

θφθ sin),(norm =E
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Example

Find the directivity of an antenna whose far-electric field is given by
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Beam Solid Angle and Radiated Power

In the far field the radiated power is
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Gain vs. Directivity (1)

Directivity is defined with respect to the radiated power, radP .  This could be less than the
power into the antenna if the antenna has losses.  The gain is referenced to the power into
the antenna, inP .

inP
incP

refP aRlR

ANTENNA
I

Define the following:

=incP  power incident on the antenna terminals
=refP  power reflected at the antenna input

=inP  power into the antenna

=lossP  power loss in the antenna (dissipated in resistor ll RIPR 2
2
1

loss, = )

=radP  power radiated (delivered to resistor aa RIPR 2
2
1

rad, = , aR is the radiation

   resistance)

The antenna efficiency, e, is inrad ePP =  where 10 ≤≤ e .
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Gain vs. Directivity (2)

Gain is defined as
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Most often the use of the term gain refers to the maximum value of ),( φθG .

Example: The antenna input resistance is 50 ohms, of which 40 ohms is radiation
resistance and 10 ohms is ohmic loss.  The input current is 0.1 A and the directivity of the
antenna is 2.
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Azimuth/Elevation Coordinate System

Radars frequently use the azimuth/elevation coordinate system: (Az,El) or (α ,γ ) or
( ae φθ , ).  The antenna is located at the origin of the coordinate system; the earth's surface
lies in the x-y plane.  Azimuth is generally measured clockwise from a reference (like a
compass) but the spherical system azimuth angle φ  is measured counterclockwise from the
x axis. Therefore α = 360− φ  and γ = 90 −θ  degrees.
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Approximate Directivity Formula (1)

Assume the antenna radiation pattern is a “pencil beam” on the horizon.  The pattern is
constant inside of the elevation and azimuth half power beamwidths ( ae φθ , ) respectively:
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Approximate Directivity Formula (2)

Approximate antenna pattern
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This leads to an approximation for the directivity of 
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ππ 44

=
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= .  Note that the

angles are in radians.  This formula is often used to estimate the directivity of an omni-
directional antenna with negligible sidelobes.
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Thin Wire Antennas (1)

Thin wire antennas satisfy the condition λ<<a .  If the length of the wire (l ) is an integer
multiple of a half wavelength, we can make an “educated guess” at the current based on
an open circuited two-wire transmission line

OPEN
CIRCUIT

I(z)

z
λ / 4

FEED POINTS

2/λ

For other multiples of a half wavelength the current distribution has the following features

  l = λ / 2   l = λ

  l = 3λ / 2

FEED POINT
LOCATED AT
MAXIMUM

CURRENT GOES
TO ZERO AT END
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Thin Wire Antennas (2)

On a half-wave dipole the current can be approximated by
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Using this current in the radiation integral

∫

∫

−

′−

−

′−

′′−
=

′′−
=

4/

4/

cos

4/

4/

cos

)cos(ˆ
4

)cos(ˆ
4

),,(

λ

λ

θ

λ

λ

θ

π
η

π
η

φθ

zdezkze
r
Ijk

zdezkIze
r

jk
rE

zjkjkro

zjk
o

jkrr

From a table of integrals we find that

22

10

][ )(sin)cos(
)cos(

BA

zBBzBAe
zdezB

zA
zA

+

′+′
=′′

±==
′

′∫

4847648476

where θcosjkA =  and kB = , so that θθ 2222222 sincos kkkBA =+−=+ .  The θ
component requires the dot product θθ sinˆˆ −=•z .
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Thin Wire Antennas (3)

Evaluating the limits gives
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The magnetic field intensity in the far field is
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The directivity is computed from the beam solid angle, which requires the normalized
electric field intensity
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Thin Wire Antennas (4)
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where aR  is the radiation resistance of the dipole.  The radiated power can be viewed as
the power delivered to resistor that represents “free space.”  For the half-wave dipole the
radiation resistance is

13.73)57.36)(2(
2

2
rad ===

o
a

I

P
R  ohms



26

Naval Postgraduate School        Antennas & Propagation                      Distance Learning

Numerical Integration (1)

The rectangular rule is a simple way of evaluating an integral numerically.  The area under
the curve of )( xf  is approximated by a sum of rectangular areas of width ∆  and height

)( nxf , where anxn +−+= ∆ )1(
2

 is the center of the interval nth interval.  Therefore, if

all of the rectangles are of equal width

∑≈∫ ∆
b

a
n

b

a

xfdxxf )()(

Clearly the approximation can be made as close to the exact value as desired by reducing
the width of the triangles as necessary.  However, to keep computation time to a minimum,
only the smallest number of rectangles that provides a converged solution should be used.
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Numerical Integration (2)

Example:  Matlab programs to integrate 
( )

θ
θ

θπ
π

d
sin

2/coscos2

0
∫

Sample Matlab code for the rectangular rule
% integrate dipole pattern using the rectangular rule
clear
rad=pi/180;
% avoid 0 by changing the limits slightly
a=.001; b=pi-.001;
N=5
delta=(b-a)/N;
sum=0;
for n=1:N

theta=delta/2+(n-1)*delta;
sum=sum+cos(pi*cos(theta)/2)^2/sin(theta);

end
I=sum*delta

Convergence: N=5, 1.2175; N=10, 1.2187; N=50, 1.2188.  Sample Matlab code using the
quad8 function

% integrate to find half wave dipole solid angle
clear
I=quad8('cint',0.0001,pi-.0001,.00001);
disp(['cint integral, I: ',num2str(I)])

function P=cint(T)
% function to be integrated
P=(cos(pi*cos(T)/2).^2)./sin(T);
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Thin Wires of Arbitrary Length

For a thin-wire antenna of length l  along the z axis, the electric field intensity is
























−








= −

θ

θ

π
η

θ sin
2

coscos
2

cos

2

ll kk

e
r
Ij

E jkr

Example: λ5.1=l  (left: voltage plot; right: decibel plot)
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Feeding and Tuning Wire Antennas (1)

When an antenna terminates a transmission line, as shown below, the antenna impedance
( aZ ) should be matched to the transmission line impedance ( oZ ) to maximize the power
delivered to the antenna

oZ aZ
oa

oa

ZZ
ZZ

+
−

=Γ   and  
Γ−
Γ+

=
1
1

VSWR

The antenna’s input impedance is generally a complex quantity, ( ) aaa jXRRZ ++= l .
The approach for matching the antenna and increasing its efficiency is

1. minimize the ohmic loss, 0→lR
2. “tune out” the reactance by adjusting the antenna geometry or adding lumped

elements, 0→aX   (resonance occurs when aZ  is real)
3. match the radiation resistance to the characteristic impedance of the line by

adjusting the antenna parameters or using a transformer section, oa ZR →
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Feeding and Tuning Wire Antennas (2)

Example:  A half-wave dipole is fed by a 50 ohm line

1870.0
5073
5073

=
+
−

=
+
−

=Γ
oa

oa

ZZ
ZZ

46.1
1
1

VSWR =
Γ−
Γ+

=

The loss due to reflection at the antenna terminals is

965.01 22 =Γ−=τ

( ) 155.0log10 2 −=τ  dB

which is stated as “0.155 dB of reflection loss” (the negative sign is implied by using the
word “loss”).
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Feeding and Tuning Wire Antennas (3)

The antenna impedance is affected by
1. length
2. thickness
3. shape
4. feed point (location and method of feeding)
5. end loading

Although all of these parameters affect both the real and imaginary parts of aZ , they are
generally used to remove the reactive part.  The remaining real part can be matched using
a transformer section.
Another problem is encountered when matching a balanced radiating structure like a
dipole to an unbalanced transmission line structure like a coax.

gV
+

−

λ /2

COAX

DIPOLE

gV
+

−
λ / 2

TWO-WIRE LINE

DIPOLE

UNBALANCED FEED BALANCED FEED
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Feeding and Tuning Wire Antennas (4)

If the two structures are not balanced, a return current can flow on the outside of the
coaxial cable.  These currents will radiate and modify the pattern of the antenna.  The
unbalanced currents can be eliminated using a balun (balanced-to-unbalanced transformer)

UNBALANCED FEED BALANCED FEED

ba VV =ba VV ≠

)(zI

.  .  ..ba a b

Baluns frequently incorporate chokes, which are circuits designed to “choke off” current
by presenting an open circuit to current waves.
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Feeding and Tuning Wire Antennas (5)

An example of a balun employing a choke is the sleeve or bazooka balun

4/λ
oZ ′

oZ

1I2I

1I2I

HIGH IMPEDANCE (OPEN CIRCUIT)
PREVENTS CURRENT FROM FLOWING
ON OUTSIDE

SHORT CIRCUIT

The choke prevents current from flowing on the exterior of the coax.  All current is
confined to the inside of surfaces of the coax, and therefore the current flow in the two
directions is equal (balanced) and does not radiate.  The integrity of a short circuit is easier
to control than that of an open circuit, thus short circuits are used whenever possible.
Originally balun referred exclusively to these types of wire feeding circuits, but the term
has evolved to refer to any feed point matching circuit.
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Calculation of Antenna Impedance (1)

The antenna impedance must be matched to that of the feed line.  The impedance of an
antenna can be measured or computed.  Usually measurements are more time consuming
(and therefore expensive) relative to computer simulations.  However, for a simulation to
accurately include the effect of all of the antenna’s geometrical and electrical parameters
on aZ , a fairly complicated analytical model must be used.  The resulting equations must
be solved numerically in most cases.
One popular technique is the method of moments (MM) solution of an integral equation
(IE) for the current.

gV
+

−
gE

a2

2/l−

2/l

z

2/b−

2/b

1. )(zI ′  is the unknown current distribution on the
wire

2. Find the z component of the electric field in
terms of )(zI ′  from the radiation integral

3. Apply the boundary condition

  
Ez (ρ = a) =

0, b /2 ≤ z ≤ l / 2
Eg , b /2 ≥ z

  
 

in order to obtain an integral equation for )(zI ′
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Calculation of Antenna Impedance (2)

One special form of the integral equation for thin wires is Pocklington’s equation

  
k2 +

∂2

∂z2
 

 
 

 

 
 I( ′ z )

e− jkR

4πR
−l / 2

l / 2

∫ d ′ z =
0, b / 2 ≤ z ≤ l / 2
− jωεEg, b / 2 ≥ z

  
 

where 22 )( zzaR ′−+= .  This is called an integral equation because the unknown
quantity )(zI ′  appears in the integrand.

4. Solve the integral equation using the method of moments (MM).  First approximate the
current by a series with unknown expansion coefficients { }nI

I( ′ z ) = InΦn( ′ z )
n=1

N

∑

The basis functions or expansion functions { }nΦ  are known and selected to suit the
particular problem.  We would like to use as few basis functions as possible for
computational efficiency, yet enough must be used to insure convergence.
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Calculation of Antenna Impedance (3)

Example: a step approximation to the current using a series of pulses.  Each segment is
called a subdomain.  Problem: there will be discontinuities between steps.

′ z 

I( ′ z )

∆

  
−l
2   

l
2

I1Φ1

I2Φ2

IN ΦN  L   L

CURRENT STEP 
APPROXIMATION

z1 z2 zN0
• • • •

A better basis function is the overlapping piecewise sinusoid

′ z 

I( ′ z )

∆

  
−l
2   

l
2

I1Φ1

I2Φ2

INΦN  L   L

CURRENT PIECEWISE
SINUSOID

z1 z2 zN0
• • •
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Calculation of Antenna Impedance (4)

A piecewise sinusoid extends over two segments (each of length ∆ ) and has a maximum at
the point between the two segment

′ z 

Φn( ′ z )

zn
)( 1+=

∆+
n

n
z

z
)( 1−=

∆−
n

n
z

z

Φn( ′ z ) =

′ z − ′ z n−1

′ z n − ′ z n−1
, ′ z n−1 ≤ ′ z ≤ ′ z n

′ z n+1 − ′ z 
′ z n+1 − ′ z n

, ′ z n ≤ ′ z ≤ ′ z n+1

0,             elsewhere

 

 

 
  

 

 
 
 

Entire domain functions are also
possible.  Each entire domain
basis function extends over the
entire wire.  Examples are
sinusoids.

′ z 

  
−l
2   

l
2

Φ1

Φ2Φ3

Φn( ′ z )
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Calculation of Antenna Impedance (5)

Solving the integral equation:  (1) insert the series back into the integral equation

  
k2 +

∂2

∂z2
 

 
 

 

 
 InΦn ( ′ z )

n=1

N

∑
 

 
 

 

 
 

e− jkR

4πR
−l / 2

l / 2

∫ d ′ z =
0, b / 2 ≤ z ≤ l / 2
− jωεEg, b / 2 ≥ z

  
 

Note that the derivative is with respect to z  (not ′ z ) and therefore the differential operates
only on R.  For convenience we define new functions f and g:

44444 344444 21
l

4444444 34444444 21

l

l
g

g

N
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zff

zzjkR

nn zbEj
zb

zd
zzR

e
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z
kI

nn
≡

=

→Φ≡

−

′−





≥−
≤≤

=∑












′∫ ′
′Φ


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
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



∂

∂
+ 2/,

2/2/,0
),(4
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1
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2/

2/

),(

2

2
2

ωεπ

Once Φn is defined, the integral can be evaluated numerically.  The result will still be a
function of z, hence the notation )(zfn .
(2) Choose a set of N testing (or weighting) functions Χm{ }. Multiply both sides of the
equation by each testing function and integrate over the domain of each function ∆ m to
obtain N equations of the form

dzzgzdzzfIz

mm

m
N

n
nnm ∫∫

∆∆ =
Χ=∑Χ )()()()(

1
,     m =1,2,..., N
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Calculation of Antenna Impedance (6)

Interchange the summation and integration operations and define new impedance and
voltage quantities

44 344 21444 3444 21
m

mm

V

m

mn

mnm

N

n
n dzzgz

Z

dzzfzI ∫∫∑
∆∆=

Χ=












Χ )()()()(
1

This can be cast into the form of a matrix equation and solved using standard matrix
methods

In
n=1

N

∑ Zmn = Vm → Z[ ] I[ ] = V[ ] → I[ ] = Z[ ]−1 V[ ]

[ ]Z  is a square impedance matrix that depends only on the geometry and material
characteristics of the dipole. Physically, it is a measure of the interaction between the
currents on segments m and n. [ ]V  is the excitation vector.  It depends on the field in the
gap and the chosen basis functions.  [ ]I  is the unknown current coefficient vector.
After [ ]I  has been determined, the resulting current series can be inserted in the radiation
integral, and the far fields computed by integration of the current.
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Self-Impedance of a Wire Antenna

The method of moments current allows calculation of the self impedance of the antenna by
taking the ratio Zself = Vg / Io

                     RESISTANCE REACTANCE
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The Fourier Series Analog to MM

The method of moments is a general solution method that is widely used in all of
engineering.  A Fourier series approximation to a periodic time function has the same
solution process as the MM solution for current. Let )(tf  be the time waveform

( ) ( )[ ]∑ ++=
∞

=1
sincos

2
)(

n
nnnn

o tbta
TT

a
tf ωω

For simplicity, assume that there is no DC component and that only cosines are necessary
to represent )(tf  (true if the waveform has the right symmetry characteristics)

( )∑=
∞

=1
cos

2
)(

n
nn ta

T
tf ω

The constants are obtained by multiplying each side by the testing function cos(ωmt) and
integrating over a period

( ) ( ) ( )




=
≠

=∫ 







∑=∫
−

∞

=− nma
nm

dttta
T

dtttf
n

T

T
m

n
nnm

T

T ,
,0

coscos
2

cos)(
2/

2/ 1

2/

2/
ωωω

This is analogous to MM when )()( zItf ′→ , nn Ia → , )cos( tnn ω→Φ , and
)cos( tmm ω→Χ .  (Since )(tf  is not in an integral equation, a second variable ′ t  is not

required.) The selection of the testing functions to be the complex conjugates of the
expansion functions is referred to as Galerkin’s method.
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Reciprocity (1)

When two antennas are in close proximity to each other, there is a strong interaction
between them.  The radiation from one affects the current distribution of the other, which
in turn modifies the current distribution of the first one.

V1

+

−

I1

Z1

I2

Z2

V21Eg

ANTENNA 1
(SOURCE)

ANTENNA 2
(RECEIVER)

Consider two situations (depicted on the following page) where the geometrical
relationship between two antennas does not change.    

1. A voltage is applied to antenna 1 and the current induced at the terminals of antenna 2 is
measured.

2. The situation is reversed: a voltage is applied to antenna 2 and the current induced at the
terminals of antenna 1 is measured.
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Reciprocity (2)

Case 1:

V1

+

−

ANTENNA 1

ANTENNA 2

I2

ENERGY FLOW

CURRENT
METER

Case 2:

ANTENNA 1

ENERGY FLOW

CURRENT
METER

I1

V2

ANTENNA 2

+

−



44

Naval Postgraduate School        Antennas & Propagation                      Distance Learning

Mutual Impedance (1)

Define the mutual impedance or transfer impedance as

Z12 =
V2
I1

  and  Z21 =
V1
I2

The first index on Z refers to the receiving antenna (observer) and the second index to the
source antenna.

Reciprocity Theorem: If the antennas and medium are linear, passive and isotropic, then
the response of a system to a source is unchanged if the source and observer (measurer)
are interchanged.
With regard to mutual impedance:

• This implies that Z21 = Z12
• The receiving and transmitting patterns of an antenna are the same if it is

constructed of linear, passive, and isotropic materials and devices.
In general, the input impedance of antenna number n  in the presence of other antennas is
obtained by integrating the total field in the gap (gap width bn )

  
Zn =

Vn
In

=
1
In

r 
E n •

bn

∫ d
r l 
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Mutual Impedance (2)

  
r 
E n  is the total field in the gap of antenna n (due to its own voltage plus the incident fields
from all other antennas).

Vn En

In
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Mutual Impedance (3)

If there are a total of N antennas

  
r 
E n =

r 
E n1 +

r 
E n2 +L+

r 
E nN

Therefore,

  
Zn =

1
In

r 
E nm

m=1

N
∑ •

bn

∫ d
r l n

Define

∫ •=
nb

nnmnm dEV lrr
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m
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nmn

∑=∑=∑=
=

≡

=

≡

= 111

1

321
For example, the impedance of dipole n=1 is written explicitly as

  Z1 = Z11 + Z12 +L+ Z1N

When m = n the impedance is the self impedance.  This is approximately the impedance
that we have already computed for an isolated dipole using the method of moments.
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Mutual Impedance (4)

The method of moments can also be used to compute the mutual coupling between
antennas. The mutual impedance is obtained from the definition

Zmn =
Vm

In Im =0
= mutual impedance at port m due to a  

current in port n,  with port m open ciruited

By reciprocity this is the same as Zmn = Znm =
Vn

Im In =0
.  Say that we have two dipoles, one

distant (n) and one near (m).  To determine Zmn a voltage can be applied to the distant
dipole and the open-circuited current computed on the near dipole using the method of
moments.  The ratio of the distant dipole’s voltage to the current induced on the near one
gives the mutual impedance between the two dipoles.

Plots of mutual impedance are shown on the following pages:

1. high mutual impedance implies strong coupling between the antennas
2. mutual impedance decreases with increasing separation between antennas
3. mutual impedance for wire antennas placed end to end is not as strong as when
    they are placed parallel
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Mutual Impedance of Parallel Dipoles
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Mutual Impedance of Colinear Dipoles
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Mutual-Impedance Example

Example:  Assume that a half wave dipole has been tuned so that it is resonant (Xa = 0).
We found that a resonant half wave dipole fed by a 50 ohm transmission line has a VSWR
of 1.46 (a reflection coefficient of 0.1870).  If a second half wave dipole is placed parallel
to the first one and 0.65 wavelength away, what is the input impedance of the first dipole?

From the plots, the mutual impedance between two dipoles spaced 0.65 wavelength is

Z21 = R21 + jX21 = −24.98 − j7.7Ω

Noting that 1221 ZZ =  the total input impedance is

Zin = Z11 + Z21
= 73 + (−24.98 − j7.7)
= 48.02 − j7.7 Ω

The reflection coefficient is

  
Γ =

Zin − Zo

Zin + Zo
=

(48.02 − j7.7)− 50
(48.02 − j7.7) + 50

= −0.0139−  j0.0797 = 0.081e− j99.93o

which corresponds to a VSWR of 1.176.  In this case the presence of the second dipole has
improved the match at the input terminals of the first antenna.
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Broadband Antennas (1)

The required frequency bandwidth increases with the rate of information transfer (i.e., high
data rates require wide frequency bandwidths).  Designing an efficient wideband antenna
is difficult.  The most efficient antennas are designed to operate at a resonant frequency,
which is inherently narrow band.

Two approaches to operating over wide frequency bands:

1. Split the entire band into sub-bands and use a separate resonant antenna in each band

Advantage: The individual antennas are easy to design (potentially inexpensive)
Disadvantage: Many antennas are required (may take a lot of space, weight, etc.)

FR
E

Q
U

E
N

C
Y

M
U

L
T

IP
L

E
X

E
R

BROADBAND
INPUT SIGNAL

1

2

N

  M

∆f1

∆f2

∆fN

  L

∆f1 ∆f2 ∆fN
f

τ

BANDWIDTH OF AN 
INDIVIDUAL ANTENNA

TOTAL SYSTEM
BANDWIDTH



52

 Naval Postgraduate School        Antennas & Propagation                      Distance Learning

Broadband Antennas (2)

2. Use a single antenna that operates over the entire frequency band

Advantage: Less aperture area required by a single antenna
Disadvantage: A wideband antenna is more difficult to design than a narrowband antenna

Broadbanding of antennas can be accomplished by:

1. interlacing narrowband elements having non-overlapping sub-bands (stepped band
approach)

Example: multi-feed point dipole

dmin

dmax

TANK CIRCUIT USING
LUMPED ELEMENTS

OPEN CIRCUIT AT
HIGH FREQUENCIES

SHORT CIRCUIT AT 
LOW FREQUENCIES
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Broadband Antennas (3)

2. design elements that have smooth geometrical transitions and avoid abrupt
discontinuities
Example: biconical antenna

dmin

dmax

spiral antenna

FEED POINT

WIRES

dmin

dmax
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Circular Spiral in Low Observable Fixture
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Broadband Antennas (4)

Another example of a broadband antenna is the log-periodic array.  It can be classified as a
single element with a gradual geometric transitions or as discrete elements that are
resonant in sub-bands.  All of the elements of the log periodic antenna are fed.

dmin dmaxDIRECTION 
OF MAXIMUM

RADIATION

The range of frequencies over which ana antenna operates is determined approximately by
the maximum and minimum antenna dimensions

dmin ≈
λH

2
 and dmax ≈

λL

2
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Yagi-Uda Antenna

A Yagi-Uda (or simply Yagi) is used at high frequencies (HF) to obtain a directional
azimuth pattern.  They are frequently employed as TV/FM antennas.  A Yagi consists of a
fed element and at least two parasitic (non-excited) elements.  The shorter elements in the
front are directors.  The longer element in the back is a reflector.  The conventional design
has only one reflector, but may have up to 10 directors.

REFLECTOR DIRECTORS

FED
ELEMENT

MAIN LOBE
MAXIMUM

DIRECTIVITY

BACK LOBE
MAXIMUM 

DIRECTIVITY

POLAR PLOT OF
RADIATION PATTERN

The front-to-back ratio is the ratio of the maximum directivity in the forward direction to
that in the back direction: Dmax / Dback
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Ground Planes and Images (1)

In some cases the method of images allows construction of an equivalent problem that is
easier to solve than the original problem.

When a source is located over a PEC ground plane, the ground plane can be removed and
the effects of the ground plane on the fields outside of the medium accounted for by an
image located below the surface.

  ORIGINAL PROBLEM EQUIVALENT PROBLEM

h h

h

ORIGINAL
SOURCES

IMAGE
SOURCES

REGION 1

REGION 2

GROUND PLANE
REMOVED

I dl
→

I dl
→

I dl
→

I dl
→

I dl
→

I dl
→

PEC

The equivalent problem holds only for computing the fields in region 1.  It is exact for an
infinite PEC ground plane, but is often used for finite, imperfectly conducting ground
planes (such as the Earth’s surface).
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Ground Planes and Images (2)

The equivalent problem satisfies Maxwell’s equations and the same boundary conditions
as the original problem. The uniqueness theorem of electromagnetics assures us that the
solution to the equivalent problem is the same as that for the original problem.

Boundary conditions at the surface of a PEC: the tangential component of the electric field
is zero.

         ORIGINAL PROBLEM EQUIVALENT PROBLEM

PEC

h

h

h

Idz
→

Idz
→

Idz
→

Eθ Eθ1 Eθ2
E⊥

E|| =0

θ2

θ1
TANGENTIAL
COMPONENTS

CANCEL

A similar result can be shown if the current element is oriented horizontal to the ground
plane and the image is reversed from the source. (A reversal of the image current direction
implies a negative sign in the image’s field relative to the source field.)
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Ground Planes and Images (3)

Half of a symmetric conducting structure can be removed if an infinite PEC is placed on
the symmetry plane.  This is the basis of a quarter-wave monopole antenna.

z = 0

I

Vg

+

−
2b

I

Vg
+

−
b

λ / 4 λ / 4

ORIGINAL
DIPOLE

MONOPOLE

PEC

• The radiation pattern is the same for the monopole as it is for the half wave dipole
above the plane z = 0

• The field in the monopole gap is twice the field in the gap of the dipole
• Since the voltage is the same but the gap is half of the dipole’s gap

56.36
2
12.73

dipole2
1

monopole === aa RR  ohms
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Crossed Dipoles (1)

Crossed dipoles (also known as a
turnstile) consists of two orthogonal
dipoles excited 90 degrees out of phase.

Ix = Io

Iy = Ioe jπ / 2 = jIo
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x

z

y

Iy

The radiation integral gives two terms
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lxde kxj φθ  and similarly for the y integral.  Therefore,
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Crossed Dipoles (2)

A similar result is obtained for Eφ

( ) ( )φφφφφ π
η

cossincossin
4

j
jkr

oj
jkr

E

o
r

e
E

r
eIjk

E

o

−
−

−=−
−

−≡

=
321
l

Consider the components of the wave propagating toward an observer on the z axis
θ = φ = 0 : Eθ = Eo , Eφ = jEo, or

( )yjx
r

e
EE

jkr

o ˆˆ +=
−r

which is a circularly polarized wave.  If the observer is not on the z axis, the projected
lengths of the two dipoles are not equal, and therefore the wave is elliptically polarized.
The axial ratio (AR) is a measure of the wave’s ellipticity at the specified θ,φ :

AR =
Emax
Emin

, 1 ≤ AR ≤ ∞

For the crossed dipoles

AR =
Eφ

Eθ
=

1

cos2 θ cos2 φ + sin2 φ( )
=

1
cosθ
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Crossed Dipoles (3)

The rotating linear pattern is shown.  A linear receive antenna rotates like a propeller blade
as it measures the far field at range r.  The envelope of the oscillations at any particular
angle gives the axial ratio at that angle.  For example, at 50 degrees the AR is about
1/ 0.64 =1.56 = 1.93 dB.
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Crossed Dipoles (4)

Examples of rotating linear patterns on crossed dipoles that are not equal in length
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Polarization Loss (1)

For linear antennas an effective height (  
r 
h e ) can be defined

  Voc =
r 
E inc •

r 
h e Voc   

r 
E inc

  
r 
h e

The open circuit voltage is a maximum when the antenna is aligned with the incident
electric field vector. The effective height of an arbitrary antenna can be determined by
casting its far field in the following form of three factors

[ ] [ ]),(),,( φθφθ e

jkr

o h
r

e
ErE

rr








=

−

The effective height accounts for the incident electric field projected onto the antenna
element.  The polarization loss factor (PLF) between the antenna and incident field is

  
PLF, p =

r 
E inc •

r 
h e

2

r 
E inc

2 r 
h e

2
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Polarization Loss (2)

Example: The Hertzian dipole’s far field is

[ ]43421l
r

r
),(

ˆsin
4

),,(

φθ

θθ
π

η
φθ

eh

jkr
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r
ekIj

rE 
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


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


=

−

If we have a second dipole that is rotated by an angle δ  in a plane parallel to the plane
containing the first dipole, we can calculate the PLF as follows.  First,

  Voc =
r 
E inc •

r 
h e =

r 
E inc ˆ z •

r 
h e ˆ ′ z =

r 
E inc

r 
h e ˆ z • ˆ ′ z =

r 
E inc

r 
h e cosδ

Voc

  
r 
E inc

  
r 
h e

z

x

z
′ z 

yy
δ

TRANSMIT RECEIVE
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Polarization Loss (3)

The PLF is

δ
δ 2

22
inc

222
inc

22
inc

2
inc

cos
cos

==
•

=
e

e

e

e

hE

hE

hE

hE
p rr

rr
rr
rr

When the dipoles are parallel, p=1, and there is no loss due to polarization mismatch.
However, when the dipoles are at right angles, p=0 and there is a complete loss of signal.

A more general case occurs when the incident field has both θ  and φ  components

  
r 
E inc = Eiθ

ˆ θ + Eiφ
ˆ φ 

( )
22

2

ˆˆ

ˆˆ

eii

eii

hEE

hEE
p r

r

φθ

φθ

φθ

φθ

+

•+
=

Example: The effective height of a RHCP antenna which radiates in the +z direction is
given by the vector ( )φθ ˆˆ jhh oe −=

r
.  A LHCP field is incident on this antenna (i.e., the

incident wave propagates in the –z direction):

( ) jkz
o ejEE φθ ˆˆ

inc −=
r
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Polarization Loss (4)

The PLF is

( ) ( )
0

22

ˆˆˆˆ

22

2

=
−•−

=
oo

jkz
oo

hE

ejjhE
p

φθφθ

If a RHCP wave is incident on the same antenna, again propagating along the z axis in the
negative direction, ( ) jkz

o ejEE φθ ˆˆ
inc +=

r
.  Now the PLF is

( ) ( )
1

22

ˆˆˆˆ

22

2

=
+•−

=
oo

jkz
oo

hE

ejjhE
p

φθφθ

Finally, if a linearly polarized plane wave is incident on the antenna, jkz
oeEE θ̂inc =

r

( )
2/1

2

ˆˆˆ

22

2

=
•−

=
oo

jkz
oo

hE

ejhE
p

θφθ

If a linearly polarized antenna is used to receive a circularly polarized wave (or the reverse
situation), there is a 3 dB loss in signal.
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Antenna Polarization Loss

Summary of polarization
losses for polarization
mismatched antennas

TRANSMIT 
ANTENNA

RECEIVE 
ANTENNA

RHCP

LHCP

V

H

RHCP

V

0 dB

3 dB

3 dB

> 25 dB

0 dB

3 dB

> 25 dB
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Aircraft Blade Antenna

Blade antennas are used for telemetry and communications.  They have nearly
hemispherical coverage, allowing the aircraft to maneuver without a complete loss of
signal.  The resulting polarization is often called slant because it contains both horizontal
and vertical components.

Blade antenna

3. ′ ′ 0 (7.62 cm)

1.5 ′ ′ 8 
(4.01cm)h

  45o

λ / 4 THIN WIRE

Method of moments model:

Location of source
excitation

Comparison of measured and calculated
patterns for a blade installed on a cylinder
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Blade Antennas Installed on an Aircraft

The top antenna (A) provides coverage in the upper hemisphere, while the bottom antenna
(B) covers the lower hemisphere.  The two antennas can be duplexed (switched) or their
signals combined using a coupler.

Method of moments patch model: Elevation pattern: (signals
combined with 3 dB coupler)

Ro ll

Pit ch

Yaw

A

B

x
y z
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Small Loop Antenna (1)

By symmetry, we expect that the field of a small wire loop located in the z = 0 plane will
depend only on the angle off of the wire axis, θ .  Because of the azimuthal symmetry
cylindrical coordinates are required to solve this problem.  If the wire is very thin (a
filament) and has a constant current φ̂ ′oI  flowing in it, the radiation integral is

( )∫
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Using the transformation tables

( )
( )φφφφθ

φφρ
θφθφθ

′+′=′
′+′=′=′
++=

• sinsincoscossinˆ
sinˆcosˆˆ

cosˆsinsinˆcossinˆˆ

arr
yxaar

zyxr

r
r

We also need φ̂ ′ in terms of the cartesian
unit vectors (φ̂ ′ is not a constant that can be
moved outside of the integral)

φφφ ′+′−=′ cosˆsinˆˆ yx
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Small Loop Antenna (2)

The radiation integral becomes

( ) ( )∫ ′′+′−
−

≈ ′+′−
π

φφφφθ φφφ
π
η

φθ
2
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For a small loop 1<<ka  and the exponential can be represented by the first two terms of a
Taylor’s series to get ( ) ( )φφφφθφφφφθ ′+′+≈

′+′ sinsincoscossin1cossinsincossin jkae jka

Inserting the approximation in the integral
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remaining terms in the integrand involve the following factors:
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Small Loop Antenna (3)

The only two terms that do not integrate to zero are of the form

πφφφφ
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The radiation pattern of the small loop is the same as that of a short dipole aligned with the
loop axis.  The radiated power is
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Helix Antenna (1)

A helix is described by the following parameters:

D = diameter
A = axial length
C = circumference ( Dπ )
S = center-to-center spacing

between turns
L = length of one turn
N = number of turns

== − )/(tan 1 DS πα pitch angle

d

D

S

DC π=

S

Lα

GROUND PLANE

z

Conventional helices are constructed with air or low-dielectric cores.  A helix is capable of
operating in several different radiation modes and polarizations, depending on the
combination of parameter values and the frequency.
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Helix Antenna (2)

Radiation modes of a helix:

λ>C

SMALL (LOOKS
LIKE A LOOP)

LARGE

NORMAL MODE AXIAL  MODE In both cases the radiation is circularly
polarized:

Normal mode: 22
2
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π

λ
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S
=

Axial mode: 
n

n
2

12
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+
=

In the axial mode, the beamwidth decreases
with increasing helix length, NS

λλ /)/(
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BWFN
NSC

o
=

for oo 1312 << α .


